

related techniques) he knows will have payoff.

TRANSFORM(I,J:INT, X,Y:STRING; SUBSTITUTE)

SUBSTRING(I, J, X CONCAT Y)

TO

SUBSTITUTE(Z:X CONCAT Y, SUBSTRING(I,J,Z)) (I,J,X,Y)

In general, a transformation rule has the format

TRANSFORM^ pattern variables) ; < action variables))

(pattern)

TO

(replacement)

All lexemes in the pattern and replacement are taken literally except for the

(pattern variables) and (action variables). The former are dummy arguments,

statement-matching variables, etc.; the latter denote values used to derive the

actual transformation from the input transformation schemata. In the above case,

the procedure SUBSTITUTE is called to expand CONCAT within SUBSTRING as

the third argument. The simplified result, 0>, is applied to the dummy argu-

ments. Hence, calls such as SUBSTRING^,2*N+C, AA CONCAT B7) are trans-

formed into calls on ^>(3,2*N+C, AA, B7)

When defining an extension set, the programmer defines the unit data types,

unit operations, and additionally the significant transformations on the problem

domain. These domain-dependent transformations are adjoined to the set of

base transformations to produce the total transformation set. The program, as

written, specifies the function to be computed; the transformation set provides

an orthogonal statement of how the computation is to be optimized.

For example, in adding a string manipulation extension, one would first

define the data type STRING (fixed length array of characters). Next,one defines

the unit operations: LENGTH, CONCATenate, SUBSTRING, SEARCH (for a

string x as part of a string y starting at position i and return the initial index or

zero if not present). Finally, one defines the transformations on program units

involving these operations.

17

TRANSFORM(X,Y:STRING) LENGTH(X CONCAT Y)

TO LENGTH(X)+LENGTH(Y)

TRANSFORM(A,X,Y,Z:STRING; SUBSTITUTE) X CONCAT Y CONCAT Z

TO SUBSTITUTE^: Y CONCAT Z; X CONCAT A) (X.Y.Z)

So long as the transformations are entirely local, they act only as macro

replacements. The significant transformations in an extension set are those

which make global, far reaching changes to program or data. Clearly, these

changes will require knowledge, assumed or asserted, about that portion of

the program affected by these changes.

Consider, for example, the issue of string variables in the proposed extensior

set. If a string variable is to have a fixed capacity, the type STRING is satisfactoi

If variable capacity is desired but an upper bound can be established for each strin

variable, the type VARSTRING could be defined like string VARYING in PL/I. If

completely variable capacity is required, a string variable would be implemented

as a pointer to a simple STRING (i.e., PTR(STRING)) with the understanding that

assignment of a string value to such a string variable causes a copy of the string

to be made and the pointer set to address the copy. With these three possible

representations available, one would define the data type string variable to be

ONEOF(STRING, VARSTRING, PTR(STRING))

Each string variable is one of these three data types. To provide for the worst

case, the programmer could specify each formal parameter string variable to be

This does not exhaust the list of possible representations for strings. To avoid

copying in concatenation, insertion, and deletion, one could represent strings by

linked lists of characters nodes: each node consisting of a character and a pointer

to the next node. A string variable could then be a pointer to such node lists. To

minimize storage, one could employ hashing to insure that each distinct sequence

of characters is represented by a unique string-table-entry; a string variable

could then be a pointer to such string-table-entries. Hashing and implementing

strings by linked lists could be combined to yield still another representation of

strings. In the interest of brevity, we consider only three rather simple repre-

sentations; however, the point we make is all the stronger when additional repre-

sentations are considered.
18

ONEOF(STRING, VARSTRING, PTR(STRING)) and specify each local string

variable to be a PTR(STRING). A program so written would be correct, but its

performance would, in general, suffer from unused generality. Each string

variable whose length is fixed can be redeclared

TRANSFORMS 1,D2:DECLIST, S:STATLIST, F:FORM, X; WHEN)

WHEN (CONSTANT(LENGTH(X))) IN
BEGIN Dl; DECL X:PTR(STRING) BYVAL F; D2; S END

TO

BEGIN Dl; DECL X:STRING BYVAL F; D2; S END

The predicate WHEN appearing in a pattern is handled in somewhat the same

fashion as are ASSERTions during program verification. It is proved as part of

the pattern matching; the transformation is applicable only if the predicate is

provably TRUE and the literal part of the pattern matches. Here, it must be

proved that LENGTH(X) is a constant over the block B and all ranges called by B.

If so, the variable can be of type STRING. Similarly, if there is a computable

maximum length less than a reasonable upper limit LIM, then the data type

VARSTRING can be used.

TRANSFORM(Dl,D2:DECLIST, B:BLOCK, F:FORM, K:INT, X; WHEN)

BEGIN Dl; DECL X:PTR(STRING) BYVAL F; D2;
WHEN(LENGTH(X) ^ K A K ^ LIM) IN B

END

TO

BEGIN Dl; DECL X:VARSTRING SIZE K BYVAL F; D2; B END

To prove an assertion for a variable X over some range, it suffices to

prove the assertion true of all expressions that are assignable to X in that range.

An assertion about LENGTH(X) is reasonable to validate since it entails only

theorem proving over the integers — once the string manipulation routines

are reinterpreted as operations on string lengths. Fortunately, most of the

interesting predicates are of this order of difficulty. Typical WHEN conditions

are: (1) a variable (or certain fields of a data structure) is not changed; (2) an

object in the heap is referenced only from a given pointer; (3) whenever control

19

reaches a given program point, a variable always has (or never has) a given

value (or set of values); (4) certain operations are never performed on certain

elements of a data structure. Such conditions are usually easier to check than

those concerned with correct program behavior, since only part of the action

carried out by the algorithm is relevant.

That is, the technique suggested above for simplifying proofs about string

manipulation operators by considering only string lengths generalizes to many

related cases. To verify a predicate concerned with certain properties, one

takes a valuation of the program on a model chosen to abstract those

19
properties. ' The program is run by a special interpreter which performs

the computation on the simpler data space tailored to the property. To correct

for the loss of information (e. g. , the values of most program tests are not

available), the computation is conservative (e.g. , the valuation of a conditional

takes the union of the valuations of the possible arms). If the valuation in the

model demonstrates the proposition, it is valid for the actual data space. While

this is a sufficient condition, not a necessary one, an appropriate model should

seldom fail to prove a true proposition.

CONCLUSION

An interpreter, a compiler, a source-level optimizer employing domain-

specific transformations, and a program verifier each compute a valuation

over some model. Fitting these valuators together so as to exploit the comple-

mentarity of their models is a central task in constructing a powerful program-

ming tool.

ACKNOWLEDGMENT

The author would like to thank Glenn Holloway and Richard Stallman for

discussions concerning various aspects of this paper.

20

REFERENCES

1 B WEGBREIT

The ECL programming system

Proc AFIPS 1971 FJCC Vol 39 AFIPS Press Montvale New Jersey

pp 253-262

2 A J PERLIS

The synthesis of algorithmic systems

JACM Vol 17 No 1 January 1967 pp 1-9

3 T E CHEATHAM et al.

On the basis for ELF — an extensible language facility

Proc AFIPS FJCC 1968 Vol 33 pp 937-948

4 D G BOBROW

Requirements for advanced programming systems for list processing

CACM Vol 15 No 7 July 1972

5 T E CHEATHAM and B WEGBREIT

A laboratory for the study of automating programming

Proc AFIPS 1972 SJCC Vol 40

6 W TEITELMAN et al.

BBN-LISP

Bolt Beranek and Newman Inc Cambridge Massachusetts July 19 71

7 E W DIJKSTRA

Recursive programming

Numerische Mathematik 2 (1960) pp 312-318. Also in Programming

Systems and Languages S Rosen (Ed) McGraw-Hill New York 1967

21

8 J MOSES

The function of FUNCTION in LISP

SIGSAM Bulletin July 1970 pp 13-27

9 IBM SYSTEM/360

PL/I language reference manual

Form C28-8201-2 IBM 1969

10 R SETHI and J D ULLMAN

The generation of optimal code for arithmetic expressions

JACM Vol 17 No 4 October 1970 pp 715-728

11 A V AHO and J D ULLMAN

Transformations on straight line programs

Conf Rec Second Annual ACM Symposium on Theory of Computing

SIGACT May 1970 pp 136-148

12 R L SITES

Algol W reference manual

Technical Report CS-71-230 Computer Science Department Stanford

University August 19 71

13 D G BOBROW and B WEGBREIT

A model and stack implementation of multiple environments

Report No 2334 Bolt Beranek and Newman Cambridge Massachusetts

March 19 72 submitted for publication
14 R F FLOYD

Assigning meanings to programs

Proc Symp Appl Math Vol 19 1967 pp 19-32

15 R F FLOYD

Toward interactive design of correct programs

Proc IFIP Congress 1971 Ljubljana pp 1-5

22

16 J POUPON and B WEGBREIT

Verification techniques for data structures including pointers

Center for Research in Computing Technology Harvard University

in preparation

17 B A GALLER and A J PERLIS

A proposal for definitions in Algol

CACM Vol 10 No 4 April 1967 pp 204-219

18 J C KING

A program verifier

PhD Thesis Department of Computer Science Carnegie-Mellon

University September 1969

19 M SINTZOFF

Calculating properties of programs by valuations on specific models

SIGPLAN Notices Vol 7 No 1 and SIGACT News No 14 January 19 72

pp 203-207

20 B WEGBREIT et al.

ECL programmer's manual

Center for Research in Computing Technology Harvard University

Cambridge Massachusetts January 19 72

23

APPENDIX: A BRIEF DESCRIPTION OF ELI SYNTAX

To a first approximation, the syntax of ELI is like that of ALGOL 60 or

PL/I. Variables, subscripted variables, labels, arithmetic and Boolean

expressions, assignments, gotos and procedure calls can all be written as in

ALGOL 60 or PL/I. Further, ELI is - like ALGOL 60 or PL/I - a block

structured language. Executable statements in ELI can be grouped together and

delimited by BEGIN END brackets to form blocks. New variables can be created

within a block by declaration; the scope of such variable names is the block in

which they are declared.

The syntax of ELI differs from that of ALGOL 60 or PL/I most notably in the

form of conditionals, declarations, and data type specifiers. For the purposes of

this paper, it will suffice to explain only these points of difference. (A more

complete description can be found in [20].)

A.l Conditionals

Conditionals in ELI are a special case of BEGIN END blocks. In general,

each ELI block has a value —the value of the last statement executed. Normally,

this is the last statement in the block. Instead, a block can be conditionally

exited with some other value Y by a statement of the form

@ ==> Y;
If £8 is TRUE then the block is exited with the value of Y ; otherwise, the next

statement of the block is executed. For example, the ALGOL 60 conditional

if &1 then rx else if @2 then Y2 else Y^

is written in ELI as

BEGIN &l =£> Yx ; ®2 ==> Y2 ; Y'g END

(Unconditional statements of an ELI block are simply executed sequentially —

unless a goto transfers control to a different labeled statement.)

A. 2 Declarations

The initial statements of a block may be declarations having the format

DECL £: Jf S ;

where £ is a list of identifiers, Jt is the data type, and S specifies the initiali-

zation. For example,

DECL X,Y: REAL BYVAL A[I] ;

This creates two REAL variables named X and Y and initializes them to separate

copies of the current value of A[I]. The specification S may assume one of three

forms:

24

(1) empty — in which case a default initialization determined by the data type

is used.

(2) BYVAL "V — in which case the variables are initialized to copies of the

value of f.

(3) SHARED "V — in which case the variables are declared to be synonymous

with the value of 'V.

A.3 Data types

Builtin data types of the language include: BOOL, CHAR, INT, and REAL.

These may be used as data type specifiers to create scalar variables.

Array variables may be declared by using the builtin procedure ARRAY.

For example,
DECL C: ARRAY(CHAR) BYVAL Y ;

creates a variable named C which is an ARRAY of CHARacters. The LENGTH

(i.e. , number of components) and initial value of C is determined by the value of 'V.

Procedure-valued variables may be defined by the builtin procedure PROC.

For example,

DECL G:PROC(BOOL,ARRAY(INT); REAL);

declares G to be variable which can be assigned only those procedures which take

a BOOL argument and an ARRAY(INT) argument and deliver a REAL result.

A.4 Procedures

A procedure may be defined by assigning a procedure value to a procedure-

valued variable. For example,

IPOWER *-
EXPR(X:REAL,N:INT; REAL)
BEGIN DECL RrREAL BYVAL 1; FOR 1 TO N DO R - R*X; R END

assigns to IPOWER a procedure which takes two arguments, a REAL and an INT

(assumed positive), and computes the exponential.

25

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

I. ORIGINATING A c T l v l T Y (Corporate author)

Harvard University
Center for Research in Computing Technology
Cambridge, Mass. 02138

Za. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2ft. GROUP

N/A
3 REPORT TITLE

MULTIPLE EVALUATORS IN AN EXTENSIBLE PROGRAMMING SYSTEM

4. DESCRIPTIVE NO T ES (Type of report and inclusive dates)

None
3. AUTHOR(S) (First name, middle initial, last name)

Ben Wegbreit

6. REPORT DATE

March 1973
7a. TOTAL NO. OF PAGES

30
76. NO. OF RE FS

20
6a. CONTRACT OR GRANT NO

FI9628-7I-C-0I73
9a. ORIGINATOR'S REPORT NUMBER(S)

b. PROJEC T NO. ESD-TR-73-II2

2801 Task 02
9ft. OTHER REPORT NOISI (Any other numbers that may be assigned

this report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited,

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field. Bedford, Mass. 01730

13. ABSTRAC T

An effective tool for programming includes a high-level language,
preferably extensible. A language alone is, however, not sufficient.
One wants a complete programming system with an interpreter, a fully
compatible compiler, a source level optimizer, and facilities for
proving properties of programs. The purpose of this paper is to dis-
cuss how these various evaluators of the language can be fitted together
and made to complement each other. The result, an extensible programming
system with multiple evaluators, provides a powerful programming tool.

DD FORM
1 NO V 65 1473 Unclassified

Security Classification

Unclassified
Security Classification

KEY WO RDS
LINK B

Programming svstem
Extensible
Interpreter
Compilers
Program verifier
Program Optimization and tuning

Unclassified
Security Classification

